BUILDING BLOCKS

UMIL & pnelre,,



mailto:banerjee@cs.queensu.ca
mailto:banerjee@cs.queensu.ca

Main Sections

Sequence | Use Case
Diagrams Diagrams

Problem Worth SICPSHio Evaluate
Solving! Solve




S0, what is the problem ?

* Software Is extremely complex.

S EliceraSirlicture 1s In place, very difficliftoienanics

Requires teamwork to build.

Software usually requires maintenance.

Feelllsermenits need to ve fraced.

Should we reduce ‘effective’ complexity?

r "
Problem juss \/\/o.rth —> INJel[Vj{felatl——> Sleps o . Eyalaate
Solving? Solve
b r

Structure in place, hard to change.

Teamwork required. Team mates need to communicate.

Maintenance, hence documentation.

Traceability is important to check if the final product delivers on the functional requirements.



Why Reduce ‘Effective Complexity’?

- Software Is ubiqurtous. Chances are, you will encounter It.

8 llifrequire less work from each team membelr torSet ITNIc mistigE
first time.

» Easier documentation and greater maintainabllity.

How to reduce effective complexity?

I M |
Probler N VWOth NN . | .. BEEEEN >tcpsto EEEEENSEURIS
Solving? Solve
(T y

1. Definitely computer scientists.

2. If team members share a common vocabulary and can communicate, it’ll be easier for
everyone.

3. Reduce risk of failure.



How to reduce ‘Effective Complexity’?

Visualize software

UML designed with the following major goals

A Plan
Visualize different layers of detall

Apply to new and legacy systems

Universal

Support parallel dev. of large systems

r; N
. Steps t
Problem s \/\/o.rth SN Solution? PN~ SP° O S
Solving? Solve
'S r

Software construction needs a plan.

The overall scope of the software can quickly and easily be defined at the start of the project

with a high level model allowing for accurate estimation. Increasing levels of detail can then
be added to each part of the software as it is constructed

Universal + Unified = standard for software modelling languages.

Just like a building



UML (design and represent Building Blocks)

UML - Unified Modelling Language

“The three amigos”

James Rumbaugh (OMT + UML, RUP)
Grady Booch (Booch Method, RUP)

lvar Jacobson (RUR EssUP)

" N
Problen NN VVorth NN ¢ | .., SEEEEN SIEPS O NEENEVIRE
Solving! Solve
(T y

OMT - Object modelling technique



UML (design and represent Building Blocks)

UML - Published by the OMG

UML 2.4 Diagram

N

Structure Diagram Behavior Diagram
Class Diagram e UseCase Diagram
Object Diagram Activity Diagram S
Package Diagram State Machine
Diagram
Model Diagram t Interaction Diagram

Composite Structure
Diagram

Sequence Diagram

Communication
Diagram

Component Diagram

‘ Manifestation Diagram | | Timing Diagram

Interaction Overview
Deployment Diagram Diagram

Network Architecture | T
L

Profile Diagram SO u rce: O mg. O rg

" N
Steps to =R
Solve
- r

\VaV/elmis

Problem . s SO|UtION?
Solving?

OMG - Object Modelling Group
UML 2.4 - March 2011



UML (contd.)

» Structure diagram (not our focus!)

- Shows the static structure of the system.

UML 2.4 Diagram

’ Structure Diagram l Behavior Diagram |
A a
interface I vol(ierltve:"fsaucre:f;coﬂoldor android.app::Activity Class Diagram |~ UseCase Diagram
—_— A s o

# onCreate(state: Bundle)

"V

+ addCallback(callback: SurfaceHolder.Callback) # onStart() ) ] .

| = + removeCallback(callback: SurfaceHolder,Callback) = - # onStop() Object Diagram Activity Diagram <3

. + setType(type: Integer) # onDestroy()

| + setFormat(format: Integer) + onCreateOptionsMenu(menu: Menu): Boolean State Machine

! + getSurface(): Surface + onOptionsltemSelected(item: Menultem): Boolean Package Diagram

: T i A

: SR A;,: wusen : wuse» wuse» — generalization A

" | |
> | Composite Structure
=, \ix ! p?)iagramu | — Sequence Diagram
«interface» CameraDemo
e —

android.view::SurfaceHolder.Callback

|
|
|
|
|
1
|
|
|
|
|
|
|
|
| |
] |
i i
| .
| ! <~ = buttonClick: Button Component Diagram Diagram
i + surfaceChanged (holder: SurfaceHolder, 1 ~ shutterCallback:ShutterCallback ~¢——
: format: Integer, width: Integer, height: Integer) ] ~ rawCallback: PictureCallback T class — | | Timing Di
I + surfaceCreated(holder: SurfaceHolder) | ~jpegCallback: PictureCallback attributes { Manifestation Diagram | iming Diagram
\ i + surfaceDestroyed (holder: SurfaceHolder, | - context L
s yed ) ' # lonCreate(savedinstanceState: Bundle) - -
. 1 \ # JonStart() : ‘ Interact!on Overview
- 772;: A : # JonStop() Deployment Diagram ‘r Diagram
! /! | # lonDestroy()
| android.view::SurfaceView ! ] + lonCreateOptionsMenu(menu: Menu): Boolean Network Architecture
] i’ | Diagram
\ + /draw(canvas: Canvas) A 1 O
: + getHolder(): SurfaceHolder oV ]
1 / interface 1 SR F Profile Diagram }—
| f realization : . onm
: ! 1
\ P i 1
_— s
— ' : ~ camera
generalization | = |
|
! Preview | android.hardware::Camera
| ) ~preview '
i S MEIOKIOR: Surfacsriolder (- + open(camerald: Integer). Camera
! + getParameters(). Parameters
3t + «crealen Preview(context: Context) + setParameters(params: Parameters)
constructor b + /surfaceChanged (holder: SurfaceHolder, format: + setPreviewDisplay (holder: SurfaceHolder) {final}
Integer, width: Integer, height: Integer) Koo— + startPreview() {final}
+ IsurfaceCreated(holder: SurfaceHolder) + stopPreview() {final}
+ /surfaceDestroyed (holder: SurfaceHolder) + camera | + release() {final}
+ /getHolder(): SurfaceHolder v = + takePicture (shutter: ShutterCallback, raw: PictureCallback,
+ [draw(canvas: Canvas) i postview: PictureCallback, jpeg: PictureCallback) {final}

\ derived operations

Implementation Class Diagram, Source: uml-diagrams.org

4 N
Problem Worth Sligps o +—> R EVETEEE
Solving? Solve
s o

- The elements in a structure diagram represent the meaningful concepts of a system, and may include abstract, real world and
implementation concepts.



UML (contd.)

» Behavior diagram
- Shows the dynamic structure of the system. o

’ Structure Diagram l Behavior Diagram |

[A) [

Class Diagram —7 | UseCase Diagram
Object Diagram — Activity Diagram

'IP.

sd submit comments% :
= lifeline «servlet»

Diagram
O . «javascript» . —
gate | -
; object creation Composite Structure | |
validate() I I i é ssage Diagram Sequence Diagram
»— I = | =
synchronous / Valldate() Component Diagram ‘[ Diagram
message ] g q : | \ [ Dlegram |
«create «ajax» ———————— . T
-—— — _> -Prox Manifestation Diagram | .
execution Froxy |
F 5 specification «ajax» | | Deployment Diagram | Diagram

Network Architecture
Diagram

Profile Diagram

«ajax»

return ——
message

o

asynchronous
message

gate /-b

duration

«callback» errors

|
| i
|
|
|

constraint
ref destruction
/’—' ; Handle Errors occurrence
specification

interaction use | I

Sequence Diagram, Source: uml-diagrams.org

s N
Problem Worth Steps to e E\aiuate
Solving? Solve
7 e -

- The elements in a behavior diagram represent a series of changes to the system over time.



Problem

Use Case Diagrams

association

acto\r& \

: Y

subject, system

«subsystem»
Checkout

wextend» .7 &
/‘4 o =

P ey

Customer

i

include —
relationship

—

-/

-o-dd-’-

use case

extend relationship
g

N\

«include» "\

—
actor

1’
Clerk /

i

Payment Service

Administrator

Worth
Solving?

A closer look !

Steps to
Solve

- Use case diagrams are also known as extensions of class diagrams.
- Use case diagrams are supposed to be behavior and structure diagrams according to UML 2.4

10



Use Case Diagrams (contd.)

Use case diagrams are used to specify: prrm— s

Checkout

>
=

* (external) requirements. d
actor «exten )144/— N >

* what a system can do;
* how environment should interact with the subject so that the

system will be able to perform its services.

\
\
\
\
\
w7
R —

Customer

AV
W
Q | |
|
A
T
3

«include»®
X7

Payment — 2 1‘ ‘ [

«authentication» Payment Service

Use Case - A set of actions henycate
se case 8 Manage
-userCredentials "’ 7%

+authType Administrator

U
!

Books Online

Subject - System under analysis to which a set
ems
of use cases apply. <
Purchase
Web Customer Items

Steps to =
Solve

Actor - external users of a system

Worth

=mmmmd SO|UtION?

Problem s

Solving?

Use case - Set of actions performed by the system to yield an observable result.
Subject - The subject could be a business or company, software system, physical system or

device, or a smaller subsystem having some behavior.

11

Actor - Standard UML notation for actor is "stick man" icon with the name of the actor above
or below of the icon. Actor names should follow the capitalization and punctuation guidelines

for classes. The names of abstract actors should be shown in italics. Custom icons can be

used, such as the “non-human” payment service.
Actors are “associated” to use-cases, there can be multiple associations for each actor.



Use Case Diagrams (contd.)

subject, system

_--’/’

«subsystem»
Checkout

association
Extend, Include - Shown using a dotted line. e coxendn |-

\& I‘I"l

Customer

extend relationship

«include» '\

o
e

—~

«inc‘lIde» include e | - Payment S ]
Bank ATM MR T Customer relationship ' i ‘ [I
Transaction Authentication /,/ Payment Service

use case & Manage
o Users

Administrator

«extend» A Plan
e e Get Help On
Registration : : : :
o Visualize different layers of detall

Registration use case is meaningful on its own. Apply to new and legacy systems
It could be extended with optional Get Help On Registration use case

¢

Registration

Universal

Support parallel dev. of large systems

VWorth Steps to

Frobiem Solving? Solve

Include similar to abstract use case defined in UML 1.xxx, UML 2.4 specifies an ‘include’
relationship, which means “what is left in the base use case is usually not complete”.
Extend - open arrowhead directed from the extending use case to the extended (base) use
case.

12



Sequence Diagrams

sd submlt_oomments) lifeline «serviet»

<‘_/\I;DWRServle«t

2 «javascript»

:window i }_Q
object creation

gate

validate() s meesage
| synchronous validate() = |
' message =
’ = :cr_ea_tez> «ajax»
:Proxy

\

[ | otburence
P specification «ajax» |
Sk
return } «ajax»
message < T
. (I asynchronous
/'» | message
gate |
€ ——— =
; «Ca||baCk» errors
duration | |
constraint ]
ref ) destruction
/’.———p Handle Errors occurrence
: : specification
interaction use J-r
e = = = ———

Focusses on message interchange between “lifelines”

VWorth Steps to

Frobiem Solving? Solve




Sequence Diagrams (Main Elements.)

participant in the interaction - °°'"T°" A@
Sygsc;:ogous / = validatel . { messa.gc

eeeeeeeeee

Lifeline: is a named element which represents an individual
I
I
I
I

data:Stock o | N
gate /‘>

{10..200ms} I
/ :
duration i
rrrrrrrrrrr

Message: Is a named element which defines a specific kind of
communication between lifelines.

VWorth Steps to

Frobiem Solving? Solve

14
Message specifies not only the kind of communication, but also the sender and the receiver.
Sender and receiver are normally two occurrence specifications (points at the ends of
messages).



Sequence Diagrams (Main Elements.)

Message Types: Synchronous Call , Asynchronous Call, Asyrehreoneus—stsnal,
@ enbelc clReEp|

‘Web
Client

:Online
Bookshop

search

Synchronous Call

:Online
Bookshop

— — —=>{ :Account

Create

Worth

Problem s

Solving?

:Service :Task

start

Asynchronous Call

:Online
Bookshop

:Account

«destroy»

Delete

=mmmmd SO|UtION?

sd submit_comments lifeline «serviet»
4—_/\;DWRServlel
. «javascript»
window :Comments }—Q
object creation
validate() I [ message |
synchronous ’/
message — B :(x_ei!_l&:) «ajax» |
executior i |
specifical «ajax» I |
return /
message N b
asynchronous
/‘V<— s=emietas message
{10..200ms} | |
/ «callback»
gy Il
juration S I—“ I
1
s ™) Lande Emors
P il
1
.
‘Web :Online
.
Client Bookshop

search

Synchronous Call - represents operation call - send message and suspend execution while

waiting for response

Asynchronous Call- send message and proceed immediately without waiting for return value.
Asynchronous Signal - message corresponds to asynchronous send signal
Create message is sent to lifeline to create itself
Delete message (called stop in previous versions of UML) is sent to terminate another lifeline
(X marks the destruction occurence).




Sequence Diagrams (Simplified for this course)

Component | Component | Component
1 1 !
1 1 !
|

Lifeline Lifeline + Messages

Problem \/\/o.rth >teps to Evaluate
Solving? Solve

16



Sequence Diagrams (example extract)

enters URL,
hits “go”

IsURLCached(URL) = false
getData(URL)

: B
1
i
1
1
. 1
i : >
: 1
I : hasspat Javascript +
: ] render(pageData) 1 DOM etc.
- 1 T 1 >
1
I : : : [Building DOM]
i 1 1 1
: 1 1 1
g 1 1 1
a 1 1 1 € e e A
. 1 1 1
: 1 1 1
] ! D [displays bitmap] 1 pageBitmap
] <€ & -
1 . : :
. 1 1 1 1
. 1 1 1 1
1

VWorth Steps to
Solving? Solve

Problem

17
The large gray box is abstracted for now, basically the DOM, XML parser etc. Note that this is
the partial sequence diagram when the page is not cached.
The dashed backwards arrow represents a “reply” (check earlier slides). You should use a
dashed forward arrow if there is a component that is created (not shown here).



THANKYOU




